On discrete homology of a free pro-group

Sergei O. Ivanov, Roman Mikhailov

    Research output

    1 Citation (Scopus)

    Abstract

    For a prime , let be a finitely generated free pro- -group of rank at least . We show that the second discrete homology group is an uncountable -vector space. This answers a problem of A. K. Bousfield.

    Original languageEnglish
    Pages (from-to)2195-2204
    Number of pages10
    JournalCompositio Mathematica
    Volume154
    Issue number10
    DOIs
    Publication statusPublished - 1 Oct 2018

    Fingerprint

    Homology Groups
    Discrete Group
    Uncountable
    Finitely Generated
    Vector space
    Homology

    Scopus subject areas

    • Algebra and Number Theory

    Cite this

    Ivanov, Sergei O. ; Mikhailov, Roman. / On discrete homology of a free pro-group. In: Compositio Mathematica. 2018 ; Vol. 154, No. 10. pp. 2195-2204.
    @article{25cef9d75ad949618fef886a38734e81,
    title = "On discrete homology of a free pro-group",
    abstract = "For a prime , let be a finitely generated free pro- -group of rank at least . We show that the second discrete homology group is an uncountable -vector space. This answers a problem of A. K. Bousfield.",
    keywords = "completion, group homology, profinite group",
    author = "Ivanov, {Sergei O.} and Roman Mikhailov",
    year = "2018",
    month = "10",
    day = "1",
    doi = "10.1112/S0010437X1800739X",
    language = "English",
    volume = "154",
    pages = "2195--2204",
    journal = "Compositio Mathematica",
    issn = "0010-437X",
    publisher = "Cambridge University Press",
    number = "10",

    }

    Ivanov, SO & Mikhailov, R 2018, 'On discrete homology of a free pro-group', Compositio Mathematica, vol. 154, no. 10, pp. 2195-2204. https://doi.org/10.1112/S0010437X1800739X

    On discrete homology of a free pro-group. / Ivanov, Sergei O.; Mikhailov, Roman.

    In: Compositio Mathematica, Vol. 154, No. 10, 01.10.2018, p. 2195-2204.

    Research output

    TY - JOUR

    T1 - On discrete homology of a free pro-group

    AU - Ivanov, Sergei O.

    AU - Mikhailov, Roman

    PY - 2018/10/1

    Y1 - 2018/10/1

    N2 - For a prime , let be a finitely generated free pro- -group of rank at least . We show that the second discrete homology group is an uncountable -vector space. This answers a problem of A. K. Bousfield.

    AB - For a prime , let be a finitely generated free pro- -group of rank at least . We show that the second discrete homology group is an uncountable -vector space. This answers a problem of A. K. Bousfield.

    KW - completion

    KW - group homology

    KW - profinite group

    UR - http://www.scopus.com/inward/record.url?scp=85064126290&partnerID=8YFLogxK

    U2 - 10.1112/S0010437X1800739X

    DO - 10.1112/S0010437X1800739X

    M3 - Article

    AN - SCOPUS:85064126290

    VL - 154

    SP - 2195

    EP - 2204

    JO - Compositio Mathematica

    JF - Compositio Mathematica

    SN - 0010-437X

    IS - 10

    ER -