The multiplicity dependence of electron production from heavy-flavour hadron decays as a function of transverse momentum was measured in p-Pb collisions at sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement was performed in the centre-of-mass rapidity interval −1.07 < ycms< 0.14 and transverse momentum interval 2 < pT< 16 GeV/c. The multiplicity dependence of the production of electrons from heavy-flavour hadron decays was studied by comparing the pT spectra measured for different multiplicity classes with those measured in pp collisions (QpPb) and in peripheral p-Pb collisions (Qcp). The QpPb results obtained are consistent with unity within uncertainties in the measured pT interval and event classes. This indicates that heavy-flavour decay electron production is consistent with binary scaling and independent of the geometry of the collision system. Additionally, the results suggest that cold nuclear matter effects are negligible within uncertainties, in the production of heavy-flavour decay electrons at midrapidity in p-Pb collisions. [Figure not available: see fulltext.]

Original languageEnglish
Article number77
JournalJournal of High Energy Physics
Issue number2
Publication statusPublished - 1 Feb 2020

Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint Dive into the research topics of 'Measurement of electrons from heavy-flavour hadron decays as a function of multiplicity in p-Pb collisions at √sNN = 5.02 TeV'. Together they form a unique fingerprint.

Cite this