Standard

Kinematics of femtosecond laser-generated plasma expansion : Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas. / Scott, G. G.; Indorf, G. F.H.; Ennen, M. A.; Forestier-Colleoni, P.; Hawkes, S. J.; Scaife, L.; Sedov, M.; Symes, D. R.; Thornton, C.; Beg, F.; Ma, T.; McKenna, P.; Andreev, A. A.; Teubner, U.; Neely, D.

In: Physics of Plasmas, Vol. 28, No. 9, 093109, 01.09.2021.

Research output: Contribution to journalArticlepeer-review

Harvard

Scott, GG, Indorf, GFH, Ennen, MA, Forestier-Colleoni, P, Hawkes, SJ, Scaife, L, Sedov, M, Symes, DR, Thornton, C, Beg, F, Ma, T, McKenna, P, Andreev, AA, Teubner, U & Neely, D 2021, 'Kinematics of femtosecond laser-generated plasma expansion: Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas', Physics of Plasmas, vol. 28, no. 9, 093109. https://doi.org/10.1063/5.0038549

APA

Scott, G. G., Indorf, G. F. H., Ennen, M. A., Forestier-Colleoni, P., Hawkes, S. J., Scaife, L., Sedov, M., Symes, D. R., Thornton, C., Beg, F., Ma, T., McKenna, P., Andreev, A. A., Teubner, U., & Neely, D. (2021). Kinematics of femtosecond laser-generated plasma expansion: Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas. Physics of Plasmas, 28(9), [093109]. https://doi.org/10.1063/5.0038549

Vancouver

Author

Scott, G. G. ; Indorf, G. F.H. ; Ennen, M. A. ; Forestier-Colleoni, P. ; Hawkes, S. J. ; Scaife, L. ; Sedov, M. ; Symes, D. R. ; Thornton, C. ; Beg, F. ; Ma, T. ; McKenna, P. ; Andreev, A. A. ; Teubner, U. ; Neely, D. / Kinematics of femtosecond laser-generated plasma expansion : Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas. In: Physics of Plasmas. 2021 ; Vol. 28, No. 9.

BibTeX

@article{d5839ce0cc534fc49ebd816363ec8e80,
title = "Kinematics of femtosecond laser-generated plasma expansion: Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas",
abstract = "An optical diagnostic based on resonant absorption of laser light in a plasma is introduced and is used for the determination of density scale lengths in the range of 10 nm to >1 μm at the critical surface of an overdense plasma. This diagnostic is also used to extract the plasma collisional frequency, allowing inference of the temporally evolving plasma composition on the tens of femtosecond timescale. This is found to be characterized by two eras: the early time and short scale length expansion (L < 0.1λ), where the interaction is highly collisional and target material dependent, followed by a period of material independent plasma expansion for longer scale lengths (L > 0.1λ); this is consistent with a hydrogen plasma decoupling from the bulk target material. Density gradients and plasma parameters on this scale are of importance to plasma mirror optical performance and comment is made on this theme.",
author = "Scott, {G. G.} and Indorf, {G. F.H.} and Ennen, {M. A.} and P. Forestier-Colleoni and Hawkes, {S. J.} and L. Scaife and M. Sedov and Symes, {D. R.} and C. Thornton and F. Beg and T. Ma and P. McKenna and Andreev, {A. A.} and U. Teubner and D. Neely",
note = "Publisher Copyright: {\textcopyright} 2021 Author(s).",
year = "2021",
month = sep,
day = "1",
doi = "10.1063/5.0038549",
language = "English",
volume = "28",
journal = "Physics of Plasmas",
issn = "1070-664X",
publisher = "American Institute of Physics",
number = "9",

}

RIS

TY - JOUR

T1 - Kinematics of femtosecond laser-generated plasma expansion

T2 - Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas

AU - Scott, G. G.

AU - Indorf, G. F.H.

AU - Ennen, M. A.

AU - Forestier-Colleoni, P.

AU - Hawkes, S. J.

AU - Scaife, L.

AU - Sedov, M.

AU - Symes, D. R.

AU - Thornton, C.

AU - Beg, F.

AU - Ma, T.

AU - McKenna, P.

AU - Andreev, A. A.

AU - Teubner, U.

AU - Neely, D.

N1 - Publisher Copyright: © 2021 Author(s).

PY - 2021/9/1

Y1 - 2021/9/1

N2 - An optical diagnostic based on resonant absorption of laser light in a plasma is introduced and is used for the determination of density scale lengths in the range of 10 nm to >1 μm at the critical surface of an overdense plasma. This diagnostic is also used to extract the plasma collisional frequency, allowing inference of the temporally evolving plasma composition on the tens of femtosecond timescale. This is found to be characterized by two eras: the early time and short scale length expansion (L < 0.1λ), where the interaction is highly collisional and target material dependent, followed by a period of material independent plasma expansion for longer scale lengths (L > 0.1λ); this is consistent with a hydrogen plasma decoupling from the bulk target material. Density gradients and plasma parameters on this scale are of importance to plasma mirror optical performance and comment is made on this theme.

AB - An optical diagnostic based on resonant absorption of laser light in a plasma is introduced and is used for the determination of density scale lengths in the range of 10 nm to >1 μm at the critical surface of an overdense plasma. This diagnostic is also used to extract the plasma collisional frequency, allowing inference of the temporally evolving plasma composition on the tens of femtosecond timescale. This is found to be characterized by two eras: the early time and short scale length expansion (L < 0.1λ), where the interaction is highly collisional and target material dependent, followed by a period of material independent plasma expansion for longer scale lengths (L > 0.1λ); this is consistent with a hydrogen plasma decoupling from the bulk target material. Density gradients and plasma parameters on this scale are of importance to plasma mirror optical performance and comment is made on this theme.

UR - http://www.scopus.com/inward/record.url?scp=85116026226&partnerID=8YFLogxK

U2 - 10.1063/5.0038549

DO - 10.1063/5.0038549

M3 - Article

AN - SCOPUS:85116026226

VL - 28

JO - Physics of Plasmas

JF - Physics of Plasmas

SN - 1070-664X

IS - 9

M1 - 093109

ER -

ID: 86379453