Free vibrations of a multilayered non-circular cylindrical shell

Research outputpeer-review

Abstract

Free vibrations of an elastic non-circular cylindrical shell of intermediate length are considered. The shell is assumed heterogeneous in the thickness direction, in its part it may be multilayered. In order to derive the equations of stability, we use the Timoshenko-Reissner model. According to it, a shell that is heterogeneous can be replaced by a homogeneous shell with the equivalent bending and transversal shear stiffness. We obtain the approximate asymptotic formula for a frequency that takes into account an influence of a transversal shear and a variability of a directrix curvature. As an example, a three-layer elliptical shell with hinged edges and a soft middle layer is analyzed.

Original languageEnglish
Title of host publication8th Polyakhov's Reading
Subtitle of host publicationProceedings of the International Scientific Conference on Mechanics
EditorsElena V. Kustova, Gennady A. Leonov, Mikhail P. Yushkov, Nikita F. Morosov, Mariia A. Mekhonoshina
PublisherAmerican Institute of Physics
Volume1959
ISBN (Electronic)9780735416604
DOIs
Publication statusPublished - 2 May 2018
EventВосьмые Поляховские чтения: международная научная конференция по механике - Старый Петергоф, Saint Petersburg
Duration: 29 Jan 20182 Feb 2018
Conference number: 8
https://events.spbu.ru/events/polyakhov_readings
http://nanomat.spbu.ru/en/node/175
http://nanomat.spbu.ru/ru/node/192
http://spbu.ru/news-events/calendar/viii-polyahovskie-chteniya

Conference

ConferenceInternational Scientific Conference on Mechanics - Eighth Polyakhov's Reading
CountryRussian Federation
CitySaint Petersburg
Period29/01/182/02/18
Internet address

Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Free vibrations of a multilayered non-circular cylindrical shell'. Together they form a unique fingerprint.

  • Cite this

    Зелинская, А. В. (2018). Free vibrations of a multilayered non-circular cylindrical shell. In E. V. Kustova, G. A. Leonov, M. P. Yushkov, N. F. Morosov, & M. A. Mekhonoshina (Eds.), 8th Polyakhov's Reading: Proceedings of the International Scientific Conference on Mechanics (Vol. 1959). [070040] American Institute of Physics. https://doi.org/10.1063/1.5034715