Explicit form of the Hilbert symbol for polynomial formal groups

S. Vostokov, V. Volkov

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

© 2015 American Mathematical Society. Let K be a local field, c a unit in K, and Fc(X, Y) = X + Y + cXY a polynomial formal group that gives rise to a formal module Fc(M) on the maximal ideal in the ring of integers of K. Assume that K contains the group μFc,n of the roots of isogeny [pn]c(X). The natural Hilbert symbol ( · , · )c : K*×Fc(M) → μFc,n is defined over the module F(M). An explicit formula for ( · , · )c is constructed.
Original languageEnglish
Pages (from-to)785-796
JournalSt. Petersburg Mathematical Journal
Volume26
Issue number5
DOIs
StatePublished - 2015

Fingerprint Dive into the research topics of 'Explicit form of the Hilbert symbol for polynomial formal groups'. Together they form a unique fingerprint.

Cite this