Evaluation of Lyapunov exponent in generalized linear dynamical models of queueing networks

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


The problem of evaluation of Lyapunov exponent in queueing network analysis is considered based on models and methods of idempotent algebra. General existence conditions for Lyapunov exponent to exist in generalized linear stochastic dynamic systems are given, and examples of evaluation of the exponent for systems with matrices of particular types are presented. A method which allow one to get the exponent is proposed based on some appropriate decomposition of the system matrix. A general approach to modeling of a wide class of queueing networks is taken to provide for models in the form of stochastic dynamic systems. It is shown how to find the mean service cycle time for the networks through the evaluation of Lyapunov exponent for their associated dynamic systems. As an illustration, the mean service time is evaluated for some systems including open and closed tandem queues with finite and infinite buffers, fork-join networks, and systems with round-robin routing.
Original languageEnglish
Title of host publicationProc. MATHMOD 09 Vienna Full Papers CD Volume
EditorsI. Troch, F. Breitenecker
ISBN (Print)978-3-901608-35-3
StatePublished - 2009

Scopus subject areas

  • Management Science and Operations Research
  • Statistics and Probability
  • Algebra and Number Theory


Dive into the research topics of 'Evaluation of Lyapunov exponent in generalized linear dynamical models of queueing networks'. Together they form a unique fingerprint.

Cite this