Due to their interaction with crystalline defects, solute atoms play a critical role in the microstructure evolution of aluminum alloys during deformation. In addition, deformed structures often exhibit a modified aging response. For a better understanding of these mechanisms, we provide here a thorough study of deformation-induced segregation and precipitation mechanisms in an aluminum alloy containing 5.8 wt.% Mg subjected to severe plastic deformation (SPD). The solutionized alloy was processed by high-pressure torsion at room temperature and at 200 degrees C. The investigation of the microstructure and of the distribution of Mg after deformation by scanning transmission electron microscopy and atom probe tomography revealed that clustering and segregations occurred during severe deformation. Mg atoms agglomerate on grain boundaries (GBs), forming mostly nanoscaled clusters at room temperature and more uniform segregation along GBs at 200 degrees C. In any case, however, the equilibrium Al3Mg2 phase does n
Original languageEnglish
Pages (from-to)125-136
JournalActa Materialia
Volume72
DOIs
StatePublished - 2014

ID: 7038338