Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae)

A. A. Kruglikova, S. I. Chernysh

Research output

9 Citations (Scopus)

Abstract

Maggots of Lucilia sericata are widely used in the therapy of infected wounds and skin ulcers. Antimicrobial materials released by the insects during their feeding period in order to suppress microbial competitors and potential pathogens play the key role both in the maggots' survival in their natural habitats (animal corpses) and their therapeutic efficacy. Although the antimicrobial activity of the maggots' excretion was demonstrated about a hundred years ago, little is known about the nature of its active compounds. We studied the structural characteristics and antimicrobial activities of the compounds released by L. sericata maggots into the environment. To isolate the compounds, excretion was collected from the culture of actively feeding last instar larvae, active compounds were purified using a combination of liquid chromatography and antibacterial growth inhibition assay and characterized by mass spectrometry. Two groups of antibacterial compounds were isolated from the excretion: polypeptides with molecular masses ranging from 6466 to 9025 Da and small molecules with molecular masses ranging from 130 to 700 Da. The polypeptides characterized by the masses of 8882 and 9025 Da and showing selective activity against Gram-negative bacteria correspond well to diptericins, antimicrobial peptides previously found in the hemolymph of Calliphoridae maggots and known to be part of immune response to bacterial pathogens. Other high-molecular compounds with masses 6466, 6633, 5772, and 8631 Da have no clear analogs among antimicrobial peptides present in the hemolymph. The nature of small molecules present in the excretion awaits further study. Thus, the diversity of antimicrobial compounds discovered in Lucilia excretion demonstrates a sophisticated strategy that helps the maggots to fight bacteria and other microorganisms settling their environment. The strategy combines secretion of a set of antibacterial peptides involved in insect immune response as well as molecules which function outside the host organism.

Original languageEnglish
Pages (from-to)813-819
Number of pages7
JournalEntomological Review
Volume91
Issue number7
DOIs
Publication statusPublished - 1 Oct 2011

Fingerprint

Lucilia sericata
Calliphoridae
insect larvae
excretion
anti-infective agents
antimicrobial peptides
hemolymph
polypeptides
Lucilia
immune response
molecular weight
therapeutics
insects
pathogens
Gram-negative bacteria
skin (animal)
animal injuries
growth retardation
liquid chromatography
instars

Scopus subject areas

  • Insect Science

Cite this

@article{de8d979d56e144188a704d507248cb81,
title = "Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae)",
abstract = "Maggots of Lucilia sericata are widely used in the therapy of infected wounds and skin ulcers. Antimicrobial materials released by the insects during their feeding period in order to suppress microbial competitors and potential pathogens play the key role both in the maggots' survival in their natural habitats (animal corpses) and their therapeutic efficacy. Although the antimicrobial activity of the maggots' excretion was demonstrated about a hundred years ago, little is known about the nature of its active compounds. We studied the structural characteristics and antimicrobial activities of the compounds released by L. sericata maggots into the environment. To isolate the compounds, excretion was collected from the culture of actively feeding last instar larvae, active compounds were purified using a combination of liquid chromatography and antibacterial growth inhibition assay and characterized by mass spectrometry. Two groups of antibacterial compounds were isolated from the excretion: polypeptides with molecular masses ranging from 6466 to 9025 Da and small molecules with molecular masses ranging from 130 to 700 Da. The polypeptides characterized by the masses of 8882 and 9025 Da and showing selective activity against Gram-negative bacteria correspond well to diptericins, antimicrobial peptides previously found in the hemolymph of Calliphoridae maggots and known to be part of immune response to bacterial pathogens. Other high-molecular compounds with masses 6466, 6633, 5772, and 8631 Da have no clear analogs among antimicrobial peptides present in the hemolymph. The nature of small molecules present in the excretion awaits further study. Thus, the diversity of antimicrobial compounds discovered in Lucilia excretion demonstrates a sophisticated strategy that helps the maggots to fight bacteria and other microorganisms settling their environment. The strategy combines secretion of a set of antibacterial peptides involved in insect immune response as well as molecules which function outside the host organism.",
author = "Kruglikova, {A. A.} and Chernysh, {S. I.}",
year = "2011",
month = "10",
day = "1",
doi = "10.1134/S0013873811070013",
language = "English",
volume = "91",
pages = "813--819",
journal = "Entomological Review",
issn = "0013-8738",
publisher = "МАИК {"}Наука/Интерпериодика{"}",
number = "7",

}

TY - JOUR

T1 - Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae)

AU - Kruglikova, A. A.

AU - Chernysh, S. I.

PY - 2011/10/1

Y1 - 2011/10/1

N2 - Maggots of Lucilia sericata are widely used in the therapy of infected wounds and skin ulcers. Antimicrobial materials released by the insects during their feeding period in order to suppress microbial competitors and potential pathogens play the key role both in the maggots' survival in their natural habitats (animal corpses) and their therapeutic efficacy. Although the antimicrobial activity of the maggots' excretion was demonstrated about a hundred years ago, little is known about the nature of its active compounds. We studied the structural characteristics and antimicrobial activities of the compounds released by L. sericata maggots into the environment. To isolate the compounds, excretion was collected from the culture of actively feeding last instar larvae, active compounds were purified using a combination of liquid chromatography and antibacterial growth inhibition assay and characterized by mass spectrometry. Two groups of antibacterial compounds were isolated from the excretion: polypeptides with molecular masses ranging from 6466 to 9025 Da and small molecules with molecular masses ranging from 130 to 700 Da. The polypeptides characterized by the masses of 8882 and 9025 Da and showing selective activity against Gram-negative bacteria correspond well to diptericins, antimicrobial peptides previously found in the hemolymph of Calliphoridae maggots and known to be part of immune response to bacterial pathogens. Other high-molecular compounds with masses 6466, 6633, 5772, and 8631 Da have no clear analogs among antimicrobial peptides present in the hemolymph. The nature of small molecules present in the excretion awaits further study. Thus, the diversity of antimicrobial compounds discovered in Lucilia excretion demonstrates a sophisticated strategy that helps the maggots to fight bacteria and other microorganisms settling their environment. The strategy combines secretion of a set of antibacterial peptides involved in insect immune response as well as molecules which function outside the host organism.

AB - Maggots of Lucilia sericata are widely used in the therapy of infected wounds and skin ulcers. Antimicrobial materials released by the insects during their feeding period in order to suppress microbial competitors and potential pathogens play the key role both in the maggots' survival in their natural habitats (animal corpses) and their therapeutic efficacy. Although the antimicrobial activity of the maggots' excretion was demonstrated about a hundred years ago, little is known about the nature of its active compounds. We studied the structural characteristics and antimicrobial activities of the compounds released by L. sericata maggots into the environment. To isolate the compounds, excretion was collected from the culture of actively feeding last instar larvae, active compounds were purified using a combination of liquid chromatography and antibacterial growth inhibition assay and characterized by mass spectrometry. Two groups of antibacterial compounds were isolated from the excretion: polypeptides with molecular masses ranging from 6466 to 9025 Da and small molecules with molecular masses ranging from 130 to 700 Da. The polypeptides characterized by the masses of 8882 and 9025 Da and showing selective activity against Gram-negative bacteria correspond well to diptericins, antimicrobial peptides previously found in the hemolymph of Calliphoridae maggots and known to be part of immune response to bacterial pathogens. Other high-molecular compounds with masses 6466, 6633, 5772, and 8631 Da have no clear analogs among antimicrobial peptides present in the hemolymph. The nature of small molecules present in the excretion awaits further study. Thus, the diversity of antimicrobial compounds discovered in Lucilia excretion demonstrates a sophisticated strategy that helps the maggots to fight bacteria and other microorganisms settling their environment. The strategy combines secretion of a set of antibacterial peptides involved in insect immune response as well as molecules which function outside the host organism.

UR - http://www.scopus.com/inward/record.url?scp=80855128114&partnerID=8YFLogxK

U2 - 10.1134/S0013873811070013

DO - 10.1134/S0013873811070013

M3 - Article

AN - SCOPUS:80855128114

VL - 91

SP - 813

EP - 819

JO - Entomological Review

JF - Entomological Review

SN - 0013-8738

IS - 7

ER -