An electrochemical biosensor for direct detection of hepatitis C virus

Mariia Antipchik, Evgenia Korzhikova-Vlakh, Dmitry Polyakov, Irina Tarasenko, Jekaterina Reut, Andres Öpik, Vitali Syritski

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

This paper is aimed at the development of a biosensor for direct detection of Hepatitis C virus (HCV) surface antigen: envelope protein (E2). A recombinant LEL fragment of biological cell receptor CD81 and two short synthetic peptides imitating the fragment of LEL sequence of CD81 (linear and loop-like peptides) capable of specific binding to E2 were tested as molecular recognition elements of the biosensor. For this purpose the selected ligands were immobilized to the surface of a screen-printed electrode utilized as an electrochemical sensor platform. The immobilization parameters such as the ligand concentration and the immobilization time were carefully optimized for each ligand. Differential pulse voltammetry used to evaluate quantitatively binding of E2 to the ligands revealed their similar binding affinity towards E2. Thus, the linear peptide was selected as a less expensive and easily prepared ligand for the HCV biosensor preparation. The resulting HCV biosensor demonstrated selectivity towards E2 in the presence of interfering protein, conalbumin. Moreover, it was found that the prepared biosensor effectively detected E2 bound to hepatitis C virus-mimetic particles (HC VMPs) at LOD value of 2.1∙10−5 mg/mL both in 0.01 M PBS solution (pH 7.4) and in simulated blood plasma.

Original languageEnglish
Article number114196
JournalAnalytical Biochemistry
Volume624
DOIs
StatePublished - 1 Jul 2021

Scopus subject areas

  • Biophysics
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Keywords

  • CD81 cell receptor
  • E2 envelope protein
  • Electrochemical biosensor
  • Hepatitis C virus (HCV) detection
  • Screen printed electrode (SPE)C virus-Mimetic particles (HC VMPs)
  • Synthetic peptides

Fingerprint

Dive into the research topics of 'An electrochemical biosensor for direct detection of hepatitis C virus'. Together they form a unique fingerprint.

Cite this