Standard

Ahlfors-Type Theorem for Hausdorff Measures. / Florinskiy, A.A.; Fofanov, K.A.; Shirokov, N.A.

In: Journal of Mathematical Sciences, Vol. 284, No. 6, 27.09.2024, p. 880-893.

Research output: Contribution to journalArticlepeer-review

Harvard

Florinskiy, AA, Fofanov, KA & Shirokov, NA 2024, 'Ahlfors-Type Theorem for Hausdorff Measures', Journal of Mathematical Sciences, vol. 284, no. 6, pp. 880-893. https://doi.org/10.1007/s10958-024-07395-4

APA

Florinskiy, A. A., Fofanov, K. A., & Shirokov, N. A. (2024). Ahlfors-Type Theorem for Hausdorff Measures. Journal of Mathematical Sciences, 284(6), 880-893. https://doi.org/10.1007/s10958-024-07395-4

Vancouver

Florinskiy AA, Fofanov KA, Shirokov NA. Ahlfors-Type Theorem for Hausdorff Measures. Journal of Mathematical Sciences. 2024 Sep 27;284(6):880-893. https://doi.org/10.1007/s10958-024-07395-4

Author

Florinskiy, A.A. ; Fofanov, K.A. ; Shirokov, N.A. / Ahlfors-Type Theorem for Hausdorff Measures. In: Journal of Mathematical Sciences. 2024 ; Vol. 284, No. 6. pp. 880-893.

BibTeX

@article{389b4eab3025405f8255cd91562ee426,
title = "Ahlfors-Type Theorem for Hausdorff Measures",
abstract = "Suppose that Δ ⊂ C is a domain, f is an analytic function in Δ, D = f(Δ) is considered as a Riemann surface. Put lR = {z ∈ Δ : |f(z)| = R}. Let E ⊂ Δ be a closed set. Put hα,β(r) = rα| ln r|β, 0 < α < 1, 0 < β < 1. Let Λα,β(·), Λα+1,β(·) be the Hausdorff measures with respect to the functions hα,β, hα+1,β. Assume that Λα+1,β(E) < ∞. We introduce the sets lR,ε = {z ∈ lR : dist(z, ∂Δ) ≥ ε, |z| ≤ 1ε} and TR,ε = f(lR,ε ∩ E), TR,ε ⊂ D. Put (Formula presented.) Define the upper Lebesgue integral ∫∞∗0g dm for a function g, g(x)≥0, x > 0 in the following way: let U(y) =def {x > 0 : g(x) > y}, H(y) = m*U(y). Then put ∫∞∗0g dm =def∫∞0Hydy. We prove the following result. Theorem. The condition Λα,β(TR,ε) < ∞ is fulfilled for almost all R with respect to the 1-Lebesgue measure and (Formula presented.) {\textcopyright} The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.",
author = "A.A. Florinskiy and K.A. Fofanov and N.A. Shirokov",
note = "Export Date: 19 October 2024 Адрес для корреспонденции: Fofanov, K.A.; Herzen State Pedagogical UniversityRussian Federation; эл. почта: kirfof@mail.ru",
year = "2024",
month = sep,
day = "27",
doi = "10.1007/s10958-024-07395-4",
language = "Английский",
volume = "284",
pages = "880--893",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - Ahlfors-Type Theorem for Hausdorff Measures

AU - Florinskiy, A.A.

AU - Fofanov, K.A.

AU - Shirokov, N.A.

N1 - Export Date: 19 October 2024 Адрес для корреспонденции: Fofanov, K.A.; Herzen State Pedagogical UniversityRussian Federation; эл. почта: kirfof@mail.ru

PY - 2024/9/27

Y1 - 2024/9/27

N2 - Suppose that Δ ⊂ C is a domain, f is an analytic function in Δ, D = f(Δ) is considered as a Riemann surface. Put lR = {z ∈ Δ : |f(z)| = R}. Let E ⊂ Δ be a closed set. Put hα,β(r) = rα| ln r|β, 0 < α < 1, 0 < β < 1. Let Λα,β(·), Λα+1,β(·) be the Hausdorff measures with respect to the functions hα,β, hα+1,β. Assume that Λα+1,β(E) < ∞. We introduce the sets lR,ε = {z ∈ lR : dist(z, ∂Δ) ≥ ε, |z| ≤ 1ε} and TR,ε = f(lR,ε ∩ E), TR,ε ⊂ D. Put (Formula presented.) Define the upper Lebesgue integral ∫∞∗0g dm for a function g, g(x)≥0, x > 0 in the following way: let U(y) =def {x > 0 : g(x) > y}, H(y) = m*U(y). Then put ∫∞∗0g dm =def∫∞0Hydy. We prove the following result. Theorem. The condition Λα,β(TR,ε) < ∞ is fulfilled for almost all R with respect to the 1-Lebesgue measure and (Formula presented.) © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.

AB - Suppose that Δ ⊂ C is a domain, f is an analytic function in Δ, D = f(Δ) is considered as a Riemann surface. Put lR = {z ∈ Δ : |f(z)| = R}. Let E ⊂ Δ be a closed set. Put hα,β(r) = rα| ln r|β, 0 < α < 1, 0 < β < 1. Let Λα,β(·), Λα+1,β(·) be the Hausdorff measures with respect to the functions hα,β, hα+1,β. Assume that Λα+1,β(E) < ∞. We introduce the sets lR,ε = {z ∈ lR : dist(z, ∂Δ) ≥ ε, |z| ≤ 1ε} and TR,ε = f(lR,ε ∩ E), TR,ε ⊂ D. Put (Formula presented.) Define the upper Lebesgue integral ∫∞∗0g dm for a function g, g(x)≥0, x > 0 in the following way: let U(y) =def {x > 0 : g(x) > y}, H(y) = m*U(y). Then put ∫∞∗0g dm =def∫∞0Hydy. We prove the following result. Theorem. The condition Λα,β(TR,ε) < ∞ is fulfilled for almost all R with respect to the 1-Lebesgue measure and (Formula presented.) © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.

UR - https://www.mendeley.com/catalogue/a561910a-b30e-3969-9fae-ed9f220ec490/

U2 - 10.1007/s10958-024-07395-4

DO - 10.1007/s10958-024-07395-4

M3 - статья

VL - 284

SP - 880

EP - 893

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 126355159