Gravitropic response is a plant growth response against changing its position relative to the gravity vector. In the present work we studied actin cytoskeleton rearrangements during Arabidopsis root gravitropic response. Two alternative approaches were used to visualize actin microfilaments: histochemical staining of fixed roots with rhodamine-phalloidin and live imaging of microfilaments in GFP-fABD2 transgenic plants. The curvature of actin microfilaments was shown to be increased within 30–60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. Methodological issues of actin cytoskeleton visualization in the study of Arabidopsis root gravitropic response, as well as the role of microfilaments at the stages of gravity perception, signal transduction and gravitropic bending formation are discussed. It is concluded that the actin cytoskeleton rearrangements observed are associated wi