About the possibility of magnetic and gravitational capture of the technogenic nanoparticles injected in the near-Earth space in high circular orbits

E. K. Kolesnikov, S. V. Chernov

Research output

Abstract

A detailed study of the conditions for the realization of the phenomena of magnetic and gravity capture (MGC) of nanoparticles (NP) injected into the near-Earth space in circular orbits with altitudes and inclinations characteristic for orbits of satellites of navigation systems (GLONASS, GPS, etc.) is carried out. Spherical aluminum oxide particles with radii from 4 to 100 nm were considered as injected particles. It was assumed that injection of NP is performed at various points of circular orbits with a height of 19130 km, an inclination angle to the equatorial plane equal to 64.8 degrees and a longitude of the ascending node of 0, 120 and 240 degrees. Calculations of the motion of nanoparticles in near-Earth space were performed for conditions of low level solar and geomagnetic activity. The results of numerical experiments show that for all the considered spatial orientations of the orbit of the parent body (PB) of the NP motion in the magnetic and gravitational capture mode with extremely long orbital existence times (more than two years) can be realized only for nanoparticles with radii in the narrow gap from 8.6 to 10.2 nm.

Fingerprint

circular orbits
nanoparticles
inclination
GLONASS
orbits
radii
longitude
solar activity
navigation
aluminum oxides
injection
gravitation
orbitals

Scopus subject areas

  • Physics and Astronomy(all)

Cite this

@article{c4236086ad8f49a4a513d17e466466a9,
title = "About the possibility of magnetic and gravitational capture of the technogenic nanoparticles injected in the near-Earth space in high circular orbits",
abstract = "A detailed study of the conditions for the realization of the phenomena of magnetic and gravity capture (MGC) of nanoparticles (NP) injected into the near-Earth space in circular orbits with altitudes and inclinations characteristic for orbits of satellites of navigation systems (GLONASS, GPS, etc.) is carried out. Spherical aluminum oxide particles with radii from 4 to 100 nm were considered as injected particles. It was assumed that injection of NP is performed at various points of circular orbits with a height of 19130 km, an inclination angle to the equatorial plane equal to 64.8 degrees and a longitude of the ascending node of 0, 120 and 240 degrees. Calculations of the motion of nanoparticles in near-Earth space were performed for conditions of low level solar and geomagnetic activity. The results of numerical experiments show that for all the considered spatial orientations of the orbit of the parent body (PB) of the NP motion in the magnetic and gravitational capture mode with extremely long orbital existence times (more than two years) can be realized only for nanoparticles with radii in the narrow gap from 8.6 to 10.2 nm.",
author = "Kolesnikov, {E. K.} and Chernov, {S. V.}",
year = "2018",
month = "5",
day = "2",
doi = "10.1063/1.5034612",
language = "English",
volume = "1959",
journal = "AIP Conference Proceedings",
issn = "0094-243X",
publisher = "American Institute of Physics",

}

TY - JOUR

T1 - About the possibility of magnetic and gravitational capture of the technogenic nanoparticles injected in the near-Earth space in high circular orbits

AU - Kolesnikov, E. K.

AU - Chernov, S. V.

PY - 2018/5/2

Y1 - 2018/5/2

N2 - A detailed study of the conditions for the realization of the phenomena of magnetic and gravity capture (MGC) of nanoparticles (NP) injected into the near-Earth space in circular orbits with altitudes and inclinations characteristic for orbits of satellites of navigation systems (GLONASS, GPS, etc.) is carried out. Spherical aluminum oxide particles with radii from 4 to 100 nm were considered as injected particles. It was assumed that injection of NP is performed at various points of circular orbits with a height of 19130 km, an inclination angle to the equatorial plane equal to 64.8 degrees and a longitude of the ascending node of 0, 120 and 240 degrees. Calculations of the motion of nanoparticles in near-Earth space were performed for conditions of low level solar and geomagnetic activity. The results of numerical experiments show that for all the considered spatial orientations of the orbit of the parent body (PB) of the NP motion in the magnetic and gravitational capture mode with extremely long orbital existence times (more than two years) can be realized only for nanoparticles with radii in the narrow gap from 8.6 to 10.2 nm.

AB - A detailed study of the conditions for the realization of the phenomena of magnetic and gravity capture (MGC) of nanoparticles (NP) injected into the near-Earth space in circular orbits with altitudes and inclinations characteristic for orbits of satellites of navigation systems (GLONASS, GPS, etc.) is carried out. Spherical aluminum oxide particles with radii from 4 to 100 nm were considered as injected particles. It was assumed that injection of NP is performed at various points of circular orbits with a height of 19130 km, an inclination angle to the equatorial plane equal to 64.8 degrees and a longitude of the ascending node of 0, 120 and 240 degrees. Calculations of the motion of nanoparticles in near-Earth space were performed for conditions of low level solar and geomagnetic activity. The results of numerical experiments show that for all the considered spatial orientations of the orbit of the parent body (PB) of the NP motion in the magnetic and gravitational capture mode with extremely long orbital existence times (more than two years) can be realized only for nanoparticles with radii in the narrow gap from 8.6 to 10.2 nm.

UR - http://www.scopus.com/inward/record.url?scp=85047192617&partnerID=8YFLogxK

U2 - 10.1063/1.5034612

DO - 10.1063/1.5034612

M3 - Conference article

AN - SCOPUS:85047192617

VL - 1959

JO - AIP Conference Proceedings

JF - AIP Conference Proceedings

SN - 0094-243X

M1 - 040009

ER -