### Abstract

This paper suggests a selection criterion of the continuous method version for a numerical solution of the Stefan problem which would allow to calculate the phase transition boundary position with a required accuracy for a long period of time and would enable generalisation to multidimensional problems. Despite a large number of works deal with the solution to the generalised Stefan problem by the continuous method, the choice of the smoothing interval value for numerical feasibility is not fully clear. A comparison of the calculation accuracy of the phase transition boundary position using different versions of the continuous method was carried out on an example of the well known one-dimensional plane two-phase Stefan problem which possesses an analytical solution. The dependence of the total error of the numerical calculation of the phase transition boundary position on the value of the smearing interval is determined from the comparison of numerical and analytical solutions. An analysis of the reason for increase of this error with time at any choice of a constant smoothing interval is given. A version of the continuous method with a variable interval of the delta function smoothing, in which the proposed criterion is carried out, is discussed. The position of the phase transition boundary calculated proposed version matches the analytical solution with a required accuracy over a long period of time.

Original language | English |
---|---|

Pages (from-to) | 306 |

Journal | Thermal Science |

Early online date | 10 Aug 2019 |

DOIs | |

Publication status | Published - 2019 |