О новой модели влияния электронного газа на термоакустику проводников при лазерном воздействии

Research outputpeer-review

Abstract

В настоящей статье рассмотрена новая модель динамического поведения проводящих материалов при лазерном воздействии, учитывающая давление электронного газа. Для описания и объяснения новых динамических термоупругих эффектов в проводниках предлагается двухкомпонентная модель, в соответствии с которой сплошная среда состоит из двух «взаимопроникающих континуумов», т.е. в каждой точке такой среды
существуют частицы одной и другой сред, взаимодействующих между собой.
Предлагаемая модель позволяет рассматривать электронный газ, состоящий не только из свободных электронов, но и связанных. Поведение свободных электронов описывается законами для идеальных металлов, в то время как связанные электроны подчиняются более сложным законам, для которых характерны процессы захвата на локализованные уровни и перехода с одного уровня на другой – «прыжковая диффузия» - «прыжковая
проводимость». Впервые отмечается, что в отличие от известной классической модели термоупругости, существенную роль в выражении для давления электронного газа играет, с одной стороны, разница температур решётки и электронного газа, a с другой, возможность изменения концентрации свободных электронов, вызванная переходом локализованных электронов в свободное состояние в соответствии с известным физическим явлением Мотта. Длительность акустических импульсов в решётке проводника принципиально зависит не только от времени действия лазерного воздействия, но и также от времени существования разности температур электронного газа и решётки. При этом наибольшая длительность акустического импульса достигается при наличии определённой концентрации локализованных электронов. Полученные
результаты моделирования сравниваются с известными экспериментами.
Original languageRussian
Pages (from-to)17-22
Number of pages6
JournalФизическая мезомеханика
Volume21
Issue number6
DOIs
Publication statusPublished - Dec 2018

Scopus subject areas

  • Acoustics and Ultrasonics

Cite this

@article{4f58c631a3bf4b619934d4b32ac6ad0d,
title = "О новой модели влияния электронного газа на термоакустику проводников при лазерном воздействии",
abstract = "В настоящей статье рассмотрена новая модель динамического поведения проводящих материалов при лазерном воздействии, учитывающая давление электронного газа. Для описания и объяснения новых динамических термоупругих эффектов в проводниках предлагается двухкомпонентная модель, в соответствии с которой сплошная среда состоит из двух «взаимопроникающих континуумов», т.е. в каждой точке такой средысуществуют частицы одной и другой сред, взаимодействующих между собой.Предлагаемая модель позволяет рассматривать электронный газ, состоящий не только из свободных электронов, но и связанных. Поведение свободных электронов описывается законами для идеальных металлов, в то время как связанные электроны подчиняются более сложным законам, для которых характерны процессы захвата на локализованные уровни и перехода с одного уровня на другой – «прыжковая диффузия» - «прыжковаяпроводимость». Впервые отмечается, что в отличие от известной классической модели термоупругости, существенную роль в выражении для давления электронного газа играет, с одной стороны, разница температур решётки и электронного газа, a с другой, возможность изменения концентрации свободных электронов, вызванная переходом локализованных электронов в свободное состояние в соответствии с известным физическим явлением Мотта. Длительность акустических импульсов в решётке проводника принципиально зависит не только от времени действия лазерного воздействия, но и также от времени существования разности температур электронного газа и решётки. При этом наибольшая длительность акустического импульса достигается при наличии определённой концентрации локализованных электронов. Полученныерезультаты моделирования сравниваются с известными экспериментами.",
author = "Семенов, {Борис Николаевич} and Морозов, {Никита Федорович} and Индейцев, {Дмитрий Анатольевич} and Дмитрий Вавилов and Кирилл Муратиков",
year = "2018",
month = "12",
doi = "10.24411/1683-805X-2018-16004",
language = "русский",
volume = "21",
pages = "17--22",
journal = "Физическая мезомеханика",
issn = "1683-805X",
publisher = "Publishing House of the Russian Academy of Science",
number = "6",

}

TY - JOUR

T1 - О новой модели влияния электронного газа на термоакустику проводников при лазерном воздействии

AU - Семенов, Борис Николаевич

AU - Морозов, Никита Федорович

AU - Индейцев, Дмитрий Анатольевич

AU - Вавилов, Дмитрий

AU - Муратиков, Кирилл

PY - 2018/12

Y1 - 2018/12

N2 - В настоящей статье рассмотрена новая модель динамического поведения проводящих материалов при лазерном воздействии, учитывающая давление электронного газа. Для описания и объяснения новых динамических термоупругих эффектов в проводниках предлагается двухкомпонентная модель, в соответствии с которой сплошная среда состоит из двух «взаимопроникающих континуумов», т.е. в каждой точке такой средысуществуют частицы одной и другой сред, взаимодействующих между собой.Предлагаемая модель позволяет рассматривать электронный газ, состоящий не только из свободных электронов, но и связанных. Поведение свободных электронов описывается законами для идеальных металлов, в то время как связанные электроны подчиняются более сложным законам, для которых характерны процессы захвата на локализованные уровни и перехода с одного уровня на другой – «прыжковая диффузия» - «прыжковаяпроводимость». Впервые отмечается, что в отличие от известной классической модели термоупругости, существенную роль в выражении для давления электронного газа играет, с одной стороны, разница температур решётки и электронного газа, a с другой, возможность изменения концентрации свободных электронов, вызванная переходом локализованных электронов в свободное состояние в соответствии с известным физическим явлением Мотта. Длительность акустических импульсов в решётке проводника принципиально зависит не только от времени действия лазерного воздействия, но и также от времени существования разности температур электронного газа и решётки. При этом наибольшая длительность акустического импульса достигается при наличии определённой концентрации локализованных электронов. Полученныерезультаты моделирования сравниваются с известными экспериментами.

AB - В настоящей статье рассмотрена новая модель динамического поведения проводящих материалов при лазерном воздействии, учитывающая давление электронного газа. Для описания и объяснения новых динамических термоупругих эффектов в проводниках предлагается двухкомпонентная модель, в соответствии с которой сплошная среда состоит из двух «взаимопроникающих континуумов», т.е. в каждой точке такой средысуществуют частицы одной и другой сред, взаимодействующих между собой.Предлагаемая модель позволяет рассматривать электронный газ, состоящий не только из свободных электронов, но и связанных. Поведение свободных электронов описывается законами для идеальных металлов, в то время как связанные электроны подчиняются более сложным законам, для которых характерны процессы захвата на локализованные уровни и перехода с одного уровня на другой – «прыжковая диффузия» - «прыжковаяпроводимость». Впервые отмечается, что в отличие от известной классической модели термоупругости, существенную роль в выражении для давления электронного газа играет, с одной стороны, разница температур решётки и электронного газа, a с другой, возможность изменения концентрации свободных электронов, вызванная переходом локализованных электронов в свободное состояние в соответствии с известным физическим явлением Мотта. Длительность акустических импульсов в решётке проводника принципиально зависит не только от времени действия лазерного воздействия, но и также от времени существования разности температур электронного газа и решётки. При этом наибольшая длительность акустического импульса достигается при наличии определённой концентрации локализованных электронов. Полученныерезультаты моделирования сравниваются с известными экспериментами.

U2 - 10.24411/1683-805X-2018-16004

DO - 10.24411/1683-805X-2018-16004

M3 - статья

VL - 21

SP - 17

EP - 22

JO - Физическая мезомеханика

JF - Физическая мезомеханика

SN - 1683-805X

IS - 6

ER -