1. 2010
  2. On a set of transformations of Gaussian random functions

    Nazarov, A. I., 2010, In: Theory of Probability and its Applications. 54, 2, p. 203-216

    Research output: Contribution to journalArticle

  3. On the existence of an extremal function in critical Sobolev trace embedding theorem

    Nazarov, A. I. & Reznikov, A. B., 2010, In: Journal of Functional Analysis. 258, 11, p. 3906-3921

    Research output: Contribution to journalArticle

  4. Small ball probabilitiesfor smooth gaussian fields and tensor products of compact operators

    Karol, A. I. & Nazarov, A. I., 2010, Издательский Центр «Академия».

    Research output: Book/Report/AnthologyCommissioned report

  5. Неравенства Харди – Соболева для следов в конусе

    Назаров, А. И., 2010, In: АЛГЕБРА И АНАЛИЗ. 22, 6, p. 200-213

    Research output: Contribution to journalArticle

  6. Об упругих волнах в клине

    Заворохин, Г. Л. & Назаров, А. И., 2010, In: ЗАПИСКИ НАУЧНЫХ СЕМИНАРОВ САНКТ-ПЕТЕРБУРГСКОГО ОТДЕЛЕНИЯ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА РАН. 380, p. 45-52

    Research output: Contribution to journalArticlepeer-review

  7. 2009
  8. Exact L2 small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems

    Nazarov, A., 2009, In: Journal of Theoretical Probability. 22, 3, p. 640-665

    Research output: Contribution to journalArticle

  9. Exact small ball asymptotics in weighted L2-norm for some Gaussian processes

    Nazarov, A. I. & Pusev, R. S., 2009, In: Journal of Mathematical Sciences. 163, 4, p. 409-429

    Research output: Contribution to journalArticlepeer-review

  10. Log-level comparison principle for small ball probabilities

    Nazarov, A., 2009, In: Statistics and Probability Letters. 79, 4, p. 481-486

    Research output: Contribution to journalArticle

  11. The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients

    Kozlov, V. & Nazarov, A., 2009, In: Mathematische Nachrichten. 282, 9, p. 1220-1241

    Research output: Contribution to journalArticle

  12. What is the least expected number of real roots of a random polynomial?

    Nazarov, A. I. & Zaporozhets, D. N., 2009, In: Theory of Probability and its Applications. 53, 1, p. 117-133

    Research output: Contribution to journalArticle

Previous 1...9 10 11 12 13 14 15 16 ...22 Next

ID: 188795