1. 2024
  2. DAGCN: hybrid model for efficiently handling joint node and link prediction in cloud workflows

    Ма, Ж., Gao, J., Li, C., Zhang, Y. & Петросян, О. Л., 1 Dec 2024, In: Applied Intelligence. 54, 23, p. 12505–12530 26 p.

    Research output: Contribution to journalArticlepeer-review

  3. Enhancing ecological uncertainty predictions in pollution control games through dynamic Bayesian updating

    Чжоу, Ц., Петросян, О. Л. & Gao, H., 1 Dec 2024, In: Scientific Reports. 14, 1, 12594 .

    Research output: Contribution to journalArticlepeer-review

  4. Comparison of multi-step forecasting methods for renewable energy

    Dolgintseva, E., Wu, H., Petrosian, O., Zhadan, A., Allakhverdyan, A. & Мартемьянов, А. А., 7 Mar 2024, (E-pub ahead of print) In: Energy Systems. 32 p.

    Research output: Contribution to journalArticlepeer-review

  5. Resource allocation in heterogeneous network with node and edge enhanced graph attention network

    Сунь, Ц., Хе, Я. & Петросян, О. Л., 1 Mar 2024, In: Applied Intelligence. 54, 6, p. 4865–4877 13 p.

    Research output: Contribution to journalArticlepeer-review

  6. Graph attention network enhanced power allocation for wireless cellular system

    Qiushi, S., Хе, Я. & Petrosyan, O., 11 Jan 2024, In: Informatics and Automation. 23, 1, p. 259–283 25 p.

    Research output: Contribution to journalArticlepeer-review

  7. Bayesian learning in fish wars: dynamic estimation of unknown states and private information

    Петросян, О. Л. & Zhou, J., 2024, In: МАТЕМАТИЧЕСКАЯ ТЕОРИЯ ИГР И ЕЕ ПРИЛОЖЕНИЯ. 16, 2, p. 92-112 21 p.

    Research output: Contribution to journalArticlepeer-review

  8. Dynamic decision-making under uncertainty: Bayesian learning in environmental game theory

    Zhou, J., Петросян, О. Л. & Gao, H., 2024, In: Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 20, 2, p. 289–297 9 p.

    Research output: Contribution to journalArticlepeer-review

  9. 2023
  10. Long-Term Forecasting of Air Pollution Particulate Matter (PM2. 5) and Analysis of Influencing Factors

    Zhang, Y., Sun, Q., Liu, J. & Petrosian, O., 19 Dec 2023, In: Sustainability. 16, 1, 19.

    Research output: Contribution to journalArticlepeer-review

  11. Microgrid control for renewable energy sources based on deep reinforcement learning and numerical optimization approaches*

    Zhadan, A. U., Wu, H., Kudin, P. S., Zhang, Y. & Petrosian, O. L., 1 Nov 2023, In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 19, 3, p. 391-402 12 p.

    Research output: Contribution to journalArticlepeer-review

  12. Multi-agent Reinforcement Learning based Adaptive Heterogeneous DAG Scheduling

    Петросян, О. Л., Жадан, А. Ю., Аллахвердян, А. Л., Кондратов, И. В., Михеев, В. С., Romanovskii, A. & Kharin, V., 3 Oct 2023, In: ACM Transactions on Intelligent Systems and Technology. 14, 5, 26 p., 87.

    Research output: Contribution to journalArticlepeer-review

Previous 1 2 3 4 5 6 7 8 9 Next

ID: 154393