1. Characterization of the inverse problem data for One-dimensional Two-velocity dynamical system

    Belishev, M. I. & Pestov, A. L., 2015, In: St. Petersburg Mathematical Journal. 26, 3, 30 p.

    Research output: Contribution to journalArticlepeer-review

  2. Close Turning Points and the Harper Operator

    Федотов, А. А., 1 Jun 2023, In: Mathematical Notes. 113, 5-6, p. 741-746 6 p.

    Research output: Contribution to journalArticlepeer-review

  3. Coefficients of asymptotic expansions of solutions to pseudodifferential equations on manifolds with conical points.

    Lauter, R., Plamenevski, B. A. & Sarafanov, O. V., 2002, In: American Mathematical Society Translations: Series 2. 205, p. 133-162

    Research output: Contribution to journalArticlepeer-review

  4. Comparison of Asymptotic and Numerical Approaches to the Study of the Resonant Tunneling in Two-Dimensional Symmetric Quantum Waveguides of Variable Cross-Sections

    Kabardov, M. M., Plamenevskii, B. A., Sarafanov, O. V. & Sharkova, N. M., 7 May 2019, In: Journal of Mathematical Sciences (United States). 238, 5, p. 641-651 11 p.

    Research output: Contribution to journalArticlepeer-review

  5. Complexified spherical waves and their sources. A review

    Tagirdzhanov, A. M. & Kiselev, A. P., 2015, In: Optics and Spectroscopy (English translation of Optika i Spektroskopiya). 119, 2, p. 257-267

    Research output: Contribution to journalArticle

  6. Complexified Spherical Waves and Their Sources in the Physical Space

    Tagirdzhanov, A. M. & Kiselev, A. P., 2013, Progress In Electromagnetics Research Symposium PIERS 2013 in Stockholm, Sweden, 12-15 August, 2013. Curran Associates, Inc. , p. 270-273

    Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

  7. "Complex source" wavefields: sources in real space

    Tagirdzhanov, A. M., Blagovestchenskii, A. S. & Kiselev, A. P., 2011, In: Journal of Physics A: Mathematical and Theoretical. 44, 42, p. 425203

    Research output: Contribution to journalArticle

  8. Complex WKB method for adiabatic perturbations of a periodic Schrödinger operator

    Fedotov, A. A., 2011, In: Journal of Mathematical Sciences. 173, 3, p. 320-339

    Research output: Contribution to journalArticlepeer-review

  9. Complex WKB method for a difference Schrödinger equation with the potential being a trigonometric polynomial

    Федотов, А. А., 2018, In: St. Petersburg Mathematical Journal. 29, 2, p. 363-381 19 p.

    Research output: Contribution to journalArticlepeer-review

  10. COMPLEX WKB METHOD FOR A SYSTEM OF TWO LINEAR DIFFERENCE EQUATIONS

    Fedotov, A. A., 4 Mar 2022, In: St. Petersburg Mathematical Journal. 33, 2, p. 405-425 21 p.

    Research output: Contribution to journalArticlepeer-review

ID: 30872