1. Primary elements in formal modules

    Vostokov, S. V. & Klimovitskii, I. L., 2013, In: Proceedings of the Steklov Institute of Mathematics. 282, 1, p. 140-149

    Research output: Contribution to journalArticlepeer-review

  2. Purity conjecture for reductive groups

    Panin, I., 2010, In: Vestnik St. Petersburg University: Mathematics. 43, 1, p. 44-48

    Research output: Contribution to journalArticlepeer-review

  3. Ramanujan Denesting Formulas for Cubic Radicals

    Antipov, M. A. & Pimenov, K. I., 1 Apr 2020, In: Vestnik St. Petersburg University: Mathematics. 53, 2, p. 115-121 7 p.

    Research output: Contribution to journalArticlepeer-review

  4. Ramification in Elementary Abelian Extensions

    Zhukov, I. B., 1 Jan 2014, In: Journal of Mathematical Sciences (United States). 202, 3, p. 404-409 6 p.

    Research output: Contribution to journalArticlepeer-review

  5. Ramification of higher local fields, approaches and questions

    Xiao, L. & Zhukov, I., 2014, In: АЛГЕБРА И АНАЛИЗ. 26, 5, p. 1-63

    Research output: Contribution to journalArticle

  6. Ramification of higher local fields, approaches and questions

    Xiao, L. & Zhukov, I., 2014, Valuation Theory in Interaction. European Mathematical Society Publishing House, p. 670 стр., 600-656

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  7. RAMIFICATION OF HIGHER LOCAL FIELDS, APPROACHES AND QUESTIONS

    Xiao, L. & Zhukov, I., 2015, In: St. Petersburg Mathematical Journal. 26, 5, 46 p.

    Research output: Contribution to journalArticlepeer-review

  8. Rationally isotropic quadratic spaces are locally isotropic: II

    Panin, I. & Pimenov, K., 2010, In: Documenta Mathematica. Extra volume: Andrei A. Suslin sixtieth birthday, p. 515-523

    Research output: Contribution to journalArticlepeer-review

  9. Rationally isotropic quadratic spaces are locally isotropic. III

    Panin, I. & Pimenov, K., 2015, In: АЛГЕБРА И АНАЛИЗ. 27, 6, p. 234-241

    Research output: Contribution to journalArticle

  10. Rationally isotropic quadratic spaces are locally isotropic. III

    Panin, I. & Pimenov, K., 1 Jan 2016, In: St. Petersburg Mathematical Journal. 27, 6, p. 1029-1034

    Research output: Contribution to journalArticlepeer-review

ID: 30378